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RELATIONS OF THE NONLINEAR THEORY OF THIREE-LAYERED SHELLS WITH 

LAYERS OF VARIABLE THICKNESS 

S. V. Andreev and V. N. Paimushin UDC 539.3 

The versions of the theory of three-layered shells with layers of variable thickness 
proposed thus far have been based on various physical or kinematic hypotheses, as a rule 
constructed with a number of constraints on the values of the variables, the thicknesses 
of the layers and their variation, etc. [i-6]. The diversity of design of such shells made 
of ordinary materials and composites as well as their service conditions requires that re- 
solvents of a more general form, free of the above-mentioned constraints, be constructed. 

In the work reported here we constructed the necessary complex of relations of the 
geometric nonlinear theory for arbitrary displacements for three-layered shells with an 
arbitrary geometry of external layers and filler; this complex is based on the static-kine- 
matic model of a broken line, which has been well tested in computational practice [7]. The 
model used here and the corresponding equations are simplified very much to serve as a base 
for constructing linearized neutral equilibrium equations and formulating the corresponding 
problems on determining mixed [8] forms of destabilization of three-layer structural members 
of the class under consideration with a significant subcritical time of their stress-strain 
state. In particular, the general equations constructed in our work had to be applied to 
problems on the analysis of the stress-strain state and on determination of the critical 
values of acting loads for a number of aircraft structural members which have a considerably 
varying filler thickness and are subject to transverse bending in use (flaps, ailerons, and 
slats, made as three-layered plates and shells with layers of variable thickness, tail sec- 
tions of the main rotor of a helicopter, etc.), as well as some problems of the engineering 
mechanics of three-layered structural members. 

i. Problems associated with parametrizations in the noncanonical regions occupied by 
the layers are not trivial in the construction of a theory of three-layered shells with layers 
of variable thickness. These matters were investigated to various extents in [2, 3, 5, 9]. 
Following those studies, in order to parametrize the middle surfaces O(k ) (k = 1, 2) of the 
outer layers of a three-layered shell as the basis for parametrization we choose the middle 
surface of the filler o = o(3),* assuming that the vector equation ~ = ~(~i) is given for it, 

and that the components (ain , a in) and (bin, b~, b in ) of the first and second metric tensors 

and (Cin , c in) of the discriminant tensor, the Christoffel symbols (F~n), and other quantities 
determining the geometry of o are specified. Using the method of normal fictitious deformation 
[9], we parametrize o(k) in two stages, making it possible to solve this problem more cor- 
rectly than in [2, 3, 5]. In the first stage we map o onto the coupling (contact) surface of 
the layers O(kc) by means of the vector equation (see Fig. i) 

r~kc~ = r +  h(~)~ (hc~ ~ = 6~h,  h = t(3))~ (i.i) 

and in  t h e  second  s t a g e  we map s u r f a c e s  O(kc)  o n t o  e ( k  ) ,  d e t e r m i n i n g  t h e  r a d i u s - v e c t o r  r ( k )  
of points Mc~ ) ~ ~ by 

*The index (3), which pertains to parameters of the filler, is henceforth omitted as a rule; 
indices (k) and (kc) pertain to parameters on O(k ) and O(kc) , respectively. 

loshkar-Ola. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 
120-128, May-June, 1993. Original article submitted October 27, 1989; revision submitted 
December 27, 1991. 
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Fig. 1 

f~) = f~,=~ + f~)-fi(~0> (f(~) = 5(~)t(~)), ( 1 . 2 )  

where m, m(kc ) ,  and m(k ) a r e  u n i t  v e c t o r s  o f  t h e  no rma l s  t o  o,  O (k c ) ,  a ( k ) ,  r e s p e c t i v e l y ;  
2 t ( a )  and 2 t ( k  ) a r e  t h e  t h i c k n e s s e s  o f  t h e  f i l l e r  and t h e  o u t e r  l a y e r s ,  m easu red  in  t h e  
d i r e c t i o n  o f  t h e  no rma t s  ~ and m--(k); 6 (1 )  = - 5 ( = )  = 1. The v e c t o r  e q u a t i o n s  ( 1 . 1 )  and ( 1 . 2 )  
make i t  p o s s i b l e  t o  d e t e r m i n e  on O(kc) and O(k ) t h e  b a s i s  v e c t o r s  

i ~ Oi(hc)l s /P~(hc) ~(hc) ~ ~ -- ~t (h)Us(hc) l 'n ) ,  

7~ ~) = 0 -~ 7 ( ~ )  l ( ~ ) -  . - 

= - -  qh)us(h)rn  ) = ~ (~ ) ln  @ ~t(h)r s. 

E q u a t i o n s  ( 1 . 3 )  and t h e  c o r r e s p o n d i n g  f o r m u l a s  f rom [9] can  be u sed  t o  f i n d  r e l a t i o n s  
( k c )  ~(k)  b(kC) f o r  c a l c u l a t i n g  on O(kc)  and ~ (k )  t h e  components  ( _ ( k c )  c ( k ) )  and ( a i n  , Uin ' in ~in ' in ,' 

b!k))In of the discriminant and metric tensors, respectively, the Christoffel symbols (F~n c)s-~- 

F.(k)s), as well as other quantities that appear in the relations of the theory of shells. 
in 

In particular, 

t i n  = ~(kc)O(~c)Cin, 

----- Oi(,~c)On(he)a,~rn -r" "'i "'n , 

(h) ~ - - l n  _(he) 
C~n = ~(h)U(b.)Cin , 

(h) ~s m ~ %fh),~(h) 
a in  ~ t~i(h))~n(h)a~m "f" ,~i ,~n , 

b(h) {~'s . ( h )  V t ( h ) ' ~ ( h )  
in  = ~ ( h ) \ u i ( h ) U s n  @ i n 7.  

Equations (1.3) and (1.4) contain the functions 

0(~ o --- t - -  2 h ( ~ K  + h[k)r, O(~) = f - -  ~ ( ~ h ' ( k ~ )  + t~)F(~o, 

= (I + 

h (~)~ =Oh(~)/Oa i, z~ = O  k)lO~ ~, h(h)=a(~c)n~ , t ( ~ ) = a ( k ) ~  , 

a:(~) Os O k a(hC) a'(ac) s 
m ~ i(~) n(~) sa , m = O~(~c)On(~c)ash, 

(1.4) 

(i .5) 

where K, K(kc) and F, r(kc) are the average and Gaussian curvatures of surfaces a and O(kc); 

and ?'(kc) and V '(k) are the operators of covariant differentiation with respect to the met- 
rics defined by a~ (kc) and a!(k), respectively. The rest of the notation isthesameasin [5]. 

in in 
The relations obtained between the geometric parameters on o, O(kc), and O(k) can be 

simplified to within I + E z i (E is a small quantity) for the class of three-layered shells 
used most commonly in structural members, namely shells whose outer layers are thin and their 
thicknesses vary little along the coordinates =I i.e., the following estimates obtain (L is 
the characteristic linear dimension of the shell): 

] 2 t ( ~ ) / L  [max N e, t 2 t ~ ) / ] / ~ i  Imax ~ ~/~, 8 << 1. ( 1 . 6 )  

For  t h i s  c l a s s  o f  s h e l l s  t h e  s u r f a c e s  O(k ) ,  i n  t h e  s e n s e  o f  [ 9 ] ,  s l o p e  m i l d l y  r e l a t i v e  t o  
S 5~) can Z(kc) and approximate relations (for $(k) = 0(k) z i, 8i(k) = be obtained from 
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relations (1.3)-(1.5) with the assumed accuracy: 

-(h) -(hc) n - , .~ (h )"~  

- -  - -  ~d~)-* - -  '~ " - -(h) -(he) ( 1 . 7 )  
m ( h )  -~- re (he)  - -  ~s F(kc) ~ ~ ( h c ) m  - -  H o o O s ( ~ c ) r n ,  q n  ~ c~n , 

(~r ~(~) ~ )  v(~)'i,~ (H?)  = h? I +-tl~)~(~)). 

E q u a t i o n s  ( 1 . 7 ) ,  i n  t u r n ,  can  be r e d u c e d  t o  t h e  f o l l o w i n g  fo rm [5 ,  6] [ f o r  0~(~,)~5~, E.(~c)~:I, 

H(~) =k(a)--[-t(~ 0 ] w i t h  t h e  same d e g r e e  o f  a c c u r a c y  f o r  t h i n  t h r e e - l a y e r e d  s h e l l s  ( t 2 H ( ~ f l L i ~  e ) ,  

whose surfaces are mildly sloped relative to o ( .~ n , , - -  ~i ~m~max 1: 

"~ = r ~ + H ~ ) m ,  ra(~ 0 = m - n s  r ----m--H(~)r~, ( 1 . 8 )  

~ )  l~ (h) w TI {k) ' a~n ~ a b e ,  ~ i n  ~ -  b i n  --~ - i * ~ n  �9 

R e l a t i o n s  ( 1 . 3 ) - ( 1 . 8 )  t a k e  i n t o  a c c o u n t  t h e  d i f f e r e n c e s  i n  t h e  p o s i t i o n  o f  t h e  b a s i s  
v e c t o r s  on o and O(k ) in  t h e  componen t s  o f  t h e  d i s c r i m i n a n t  and m e t r i c  t e n s o r s ,  t h e  C h r i s t o f -  
f e l  s y m b o l s ,  and o t h e r  q u a n t i t i e s  t h a t  d e t e r m i n e  t h e  g e o m e t r y  o f  o and O(k ) .  W i t h i n  t h e  
framework of the static-kinematic models used for the shell layers it thus becomes possible 
to include the main geometric features of structures of the given class and the attendant 
distinctive features of the mechanics of their deformation. 

2. When a three-layered stack is considered by using the broken-line model [7], within 
which the Kirchhoff-Love hypothesis is applied to the outer layers and the hypotheses of the 
Timoshenko theory in the refined formulation [I0] are applied to the filler, the displacement 
vectors ~B) of points in levels z($) from o($) are written as (~ = i, 3) 

F~) = ~(~) + z(~)?(g) ( - -  t (~)~ z@ ~ t(~)). (2. I) 

Here 
�9 _ _ (~)-~ ~ _ - - ,  - -  

V(~) = u~)7~) -!- zc(~)tn(~), T(~) = 1'~ r(I~) + y @ m ( ~ ) ,  y (~)  = m(~ )  - -  m ( ~ )  ( 2 . 2 )  

are the displacement vectors of points of the middle surface o(~) and the rotation vectors of 

the normals m(~ to o[~ during deformation; ~(~) and mg~x 
the main bases, constructed on the deformed surfaces o~ . { are the coordinate vectors of 

_ _ ( $ )  I0]. 

The c o m p o n e n t s  o f  t h e  v e c t o r s  ~ = ~ ( s )  f o r  t h e  f i l l e r  a r e  t h e  d e s i r e d  unknowns w h i l e  
t h e  c o m p o n e n t s  o f  t h e  v e c t o r s  u  can  be  e x p r e s s e d  in  t e r m s  o f  t h e  c o m p o n e n t s  o f  t h e  d i s -  
p l a c e m e n t  v e c t o r s  V(k ) o f  p o i n t s  O(k ) and t h e i r  d e r i v a t i v e s  w i t h  r e s p e c t  t o  a ~ [ 1 0 ] .  

The r e p r e s e n t a t i o n  o f  t h e  d i s p l a c e m e n t  v e c t o r s  in  t h e  l a y e r s  o f  a s h e l l  by  ( 2 . 1 )  and 
( 2 . 2 )  c o r r e s p o n d  t o  t h e  componen t s  o f  t h e i r  s t r a i n  t e n s o r s ,  c a l c u l a t e d  a t  l e v e l s  z ( ~ )  f rom 
o(~) from the formulas 

e~i ~) = ~m~(~) -{- ~(~)~n," " (~) 2 e ~  ~) = 2 e ~  -]- z(a)V~%, ~a3-=~a) = %, e ~ )  = ~aa~ = 0,  ( 2 . 3 )  

where 

in ~ ain -- t~n , ~in ~ via -- vin 

2"(S' -* -* ' -* -* ~ " = rip3, (2.4) )~i~ = riVnpa -t- rnV~pa -7 2b, n, 2e13 -*-* 

2ea - - - -~ (2m+ ' ? ) ,  Vi% - * V - *  = Pa iPa 
( 

= 7 " c " ' 7  , = - = m -7 

W r i t i n g  t h e  l a y e r  c o u p l i n g  c o n d i t i o n s  in  t e r m s  o f  t h e  d i s p l a c e m e n t s  

and u s i n g  Eqs .  ( 1 . 3 ) ,  ( 1 . 5 ) ,  ( 2 . 1 ) ,  and ( 2 . 2 ) ,  we f i n d  t h e  r e l a t i o n s  b e t w e e n  t h e  d i s p l a c e m e n t  
v e c t o r s  in  t h e  l a y e r s  o f  t h e  s h e l l  

V~) = V(3~) + t'c~.~.~ ( 2 . 5 )  

and their components 

u(k) ~, . (3~) ~(~)w ~ ' /  7~ ~), ' tt ~ " (~) ~ 

Here we have introduced notation for the displacement vectors of points of the coupling sur- 
face O(kc) in the outer layers V(kc) and the filler V(~k), lying along basis vectors constructed 
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on O(k ) and O: 
-- ~ - -  ( 4 c ) - i  - -  

V(~e) = V(~) -- t(~)?(~) = ui  r(~) + w(4c)m(~), 

P ( ~ )  = V + ~,(~) ~ = , s  ~ + w(~,,>~. 
( 2 . 6 )  

The components of the vectors in (2.6) are expressed in terms of the previously introduced 
components (2.2) by means of 

u~ (~) = u~ - -  ~(~)?, , w(~e) = w(~) - -  t~)7(~ ), = u~ q-  h(~)7~, 

w(~4) = w + h(~)?. 

Using Eqs. (i.I)-(1.4), which parametrize the surfaces O(kc) and O(k ) relative to o in the 
initial state, and the relations found between the displacement vectors in the layers of 
the shell (2.5), we determine the radius-vectors of the points M(~)~o(4c)and M(~>~6(~ O 
in the deformed state: 

r(~) = r<4~) -{- V(~r = r,-}-h(~)p~, r ( ~ ) = r ( ~ ) ~ - V ( a ) = r ( ~ ) - { - t ( ~ ) m ( 4 ) - r - t ( ~ o ~ ( ~  ) ( 2 . 7 )  

a s  w e l l  a s  t h e  b a s i s  v e c t o r s  c o n s t r u c t e d  o n  ~ k c )  and  ~  

" -*  Z"  -*(~' : * ( ~ ' + ~ { ~ ) ( ~ , + { ( ~ ) ) + ~ ( ~ ) V i ~ < ~ ,  . ( 2 . 8 )  ~(~~ " + h(~>v~p~, ~(~),~ = ,  

Here 

r .  = r + V ,  ~(~) = ra(~c) - -  m(~),  0 i ( ~ ) = 6 i  @t(~)b~(4), ~" = V(3) .  ( 2 . 9 )  

I f  t h e  t h i c k n e s s e s  o f  t h e  o u t e r  l a y e r s  v a r y  l i t t l e  a l o n g  t h e  c o o r d i n a t e s  a i  t h a t  s a t i s f y  
c o n d i t i o n s  ( 1 . 6 ) ,  t h e n  t h e  l a s t  e q u a t i o n s  i n  ( 2 . 7 )  a n d  ( 2 . 8 )  c a n  b e  r e w r i t t e n  t o  w i t h i n  1 + 

= 1 i n  t h e  a p p r o x i m a t e  f o r m  

-* -* ~ --* 7.(4e) __'~n =.(4> ~7~4)=* r(~r = r(~) --t(n)m(~), -- -~(~)-,~ -- ,~ ,,~(~). (2. i0) 

Equations (1.3) and (1.7), (2.8) and (2.10) make it possible to find the relations between 
the components of the tangential strain tensors of surfaces ~ and o: 

as well as surfaces O(kc) and O(k): 

(kc) ~(4) ~ (h) , "~2 (4) in = ei~ - -  ~(4)Xin w (a)vin/2, (2.12) 
2 

which admit further simplifications since the last terms containing h(k ) and t2(k ) can be 
ignored. Here the components of the strains in the layers of the shell are calculated from 
(2.3) and (2.4), and 

V -*V -*  -'(~) b $ ) b * ~  ~) -- ~ ( ~ > ~  �9 %'in : iPa 'nPa - -  V i m V n ~ ,  Vin : ~.~ ~(h) 

To determine the relations between the components of the bending strain tens_ors of the 
surfaces under consideration, we construct the normal unit vectors m, to o... and m~kc) to 
~ writing them as the expansions 

-- ~ -* ,-i --, ~* ~,(kc)-i k �9 -* , o,(4)-i m,  = g ,  ( p~ -}- ~i r ,  ), m(~c) = ~(~r r . ( ~ c ) ) - - - - $ ( ~ ) ( m ( ~ ) ~ - ~  r . (~ ) ) .  ( 2 . 1 3 )  

From the conditions ~a~ --*~ ---* = *  =*(~c) =m(~c)=i and m,ri .... (~c).i ----0, using (2.4) and (2.8)-(2.10) we find 
the coefficients of the expansions in (2.13): 

T = -* -*  - _ =,7,(4r 2~!y~, - -  p~r~ = 2~i3, ~, = ( f  + 2 ~ , )  - ~ / ' ,  ;~(k~) = v~ i = - -  

~ o >  = ( t + 2 ~ 5 ) - ' %  ~*<~>.:. =~>(6:-7~>~(~,.~*~" ~)~* ( l  '~ "*'~)~-'~ = ~*(h)~i ' ) , 

~3 �9 __ ,~.~ ~162 % ( h i )  2~3 + h~ ~) ( 1 +  2%)+h(~ )Vi~ .  

Differentiating (2.13) with respect to ~i, with allowance for the approximated equations 

~, ~ i- 8., ~(kc)~ i-~<hc), ~(k) NN .'.i we determine the components of the second metric tensor of 
the surfaces o,, O(kc), and a~k ) 

and the components of the bending strain tensors 
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~,('-~) o ( 8 ) -  * ) /*  * . , ( ~ )  (kc)  . . t s (h )"~(h)  
-~- VnEi3  -- E , b i n ,  L i n  "~ ~ i n  "7- . a i n  s lfin "Lin "J- Vign3 -7- 

(kc) (3) ~ *  n * ( ~ c )  ~ E ~ ( ~ c ) ~  ~(~)V7 e t AS(~c)~.(h) w * ( ~ c )  (~c)  , r v* (h r  (~,c) 

(o(~) b* A ~  ) r (~)*~ r<~)~ A~(~r r!~)* ~ _ r ( ~ ) ~  

where 7~.", 7~ ~(kc), and V~ ~(k) are the operators of covariant differentiation with respect to 
. . . . . . . . .  �9 k the metrics determined by tensors a~'n, a.~(nkC), and a.(in )' respectxvely. 

3. We obtain the equilibrium equations and the corresponding natural boundary condi- 
tions by using the Lagrange variational equation 

6II = 5A -- 6W = O. ( 3 . 1 )  

The variations of the strain energy of the outer layers 5W(k ) and the filler 5W(~), corre- 
sponding to the static-kinematic models adopted, have the form 

o(~) (3.2) 

- "  " - - ~  - 'Y<~>6)d~ .  
(I 

Here we have introduced the vectors of internal forces and moments in the layers of the 
shell, per units of length of the coordinate lines of the undeformed surface o($) and given 
relative to the basis vectors on the deformed surfaces o($) (~ = i, 3): 

~(~)~ s 7 M(~)Vsra(~), ---- .*l(h/~ -+- Hc~)Vdn(~), 

T(a)r, v- ~(~)9~ + M(~)V~o~, M(~)r, ~ /t~(~)9 ~ + H(a)Vsp~, 
- -  ran3 -:~ ~ , ~ 3 ~  - - *  , . n , q  --* 

Their components are calculated from (v, y = i, 3) 

t(@ 

F(~) ( . . . )  = 1' ( . '  .)dz(~), t ( , ) =  V~) / a (~ ) ,  g(0) = det(g!~)}~)),  
-r(~> 

Carrying out the summation of Eqs. (3.2) and taking (2.11)-(2.13) into account, after some 
transformations we arrive at the following expression for the variation of the strain energy 

of a three-layered shell ( ~  ~=~): 

a(h ) a 

where the vectors of the internal forces and moments for the shell as a whole, 
middle surface o of the filler, are given by 

- , . . ) ~ s  V - *  3 1 . 3 - *  = s M r~ + 93-v-H V.pa, ( 3 . 3 )  

and their components are (T(h, ------ T ( h ) O , ( ~ ) ~ r ~ )  

' T(h), M ns ---- ~, (~) = T(~)h(k), 

M "~ = M(Z + Y, ~Zh<M? ), ( 3 . 4 )  
Tn3 T(naa) + ~ ~p.~. (h) Hn~ ,~ T(k)h(h), (3)n-.,~ (~) ,~ , �9 

Introducing the contour bending moments and torques of the internal forces M~) ~'~, .,(h)~,(~) 

and using formulas for the transformation of surface integrals [i0], we get 
the final expression for 6W from Eq. (3.2)', namely, 

~ w = -  (M--~6v + ~.~@lc + ~I [(d~.~/dS + 9 . , )  ~V + 
C 

(3.2)' 

reduced to the 
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Here 

( I  

0 ( ~ ) - - - t  ' t ' ~ ) k * ( ~ ) ;  ~ =  T~ + .__~ (h) = T rs + T~m,; .s -- -r- ~7 ~ ~-* ~" - -  

~ = - ~  + E - +  ~ - *  .- ' ,% . - ~ = ~  ~ v-~+ ~ )  ++-*-- N+-- N(h)h(~o = 31 t'~ + M . ,  T ~ , , ( ~ 0  ~ =~vr~-~  m . :  

-~i~) v*(~)~+a*~ ~r~-* . *~ ~ F, b *~ . = )s ~,~(~),,j(h)ra(h).am(~), 0,(~) ----.6, -- (h) s(h), 

( 3 . 5 )  

(n(~), x(~), m(~)), (/~(~), T(~), N(~)) a r e  r i g h t - h a n d  t r i h e d r a l s  o f  o r t h o g o n a l  u n i t  v e c t o r s ,  c o n s t r u c t e d  
on t h e  c o n o u r  l i n e s  C(*~) ~ a~> and  C(~)~ o(~ , r e s p e c t i v e l y .  F o r  t hem we h a v e  t h e  r e p r e s e n t a -  
t i o n s  

-*  ~*(~)2~ _ n i r.(r ) - .  __-- . ( ~ ) ~  i =,(~) - (~)=i 

- ~(~)TA T(~) = ~i ~(~), 

where dS(~) is an element of arc C ~ ) ~  O(~, k*(~ ~) b%(~)n,(~)T,(~), k,(~) _ b**~) i __.-- __ ~ "r,(!B)T.(fi ). 

To find the elementary work of external forces on possible displacements of the shell 
we assume that the load acting on it is reduced to the vectors of the surface and contour 
forces X(~) and @(B) and moments ~(~), H($) per unit deformed area o(~) and length C ( $ ) :  

�9 - ~ - - *  CO(t~)~* ~ m ( ~ ) = *  ~-(~)--* ~(~) X~r .*(~) + X(~)m@, ~(~) ~ (~) T "*'~ +(~) + 
= = q~ ra  m(~), ( 3 . 6 )  

Z(~) L~)r*(~) + ~ - - *  - -  It(~)n* ' ~(~>7" ' H(~)m * _-- L ( ~ ) m ( ~ ) ,  H ( ~ )  = n (t~) - W ~  ~(~) -r" m (l~)- 

elementary work of external loads given by vectors (3.6) we write the expres- For the 
sions 

~=;t c(i~) , 

and by analogy with (3.2)' and (3.5) recast them in the form 

- ~ g < ~ ) ~ *  ~dS+~(X+V+~)d~. ( 3 . 7 )  6A = - -  ( H ~ 6 V  + H ~ 6 y ) ] c  + ~ (@+V + t t67 + i.~ ~ o ( h ) )  

C 

H e r e  we i n t r o d u c e  t h e  f o l l o w i n g  n o t a t i o n  f o r  t h e  c o n t o u r  and  s u r f a c e  e x t e r n a l  f o r c e s  and  mo- 
m e n t s ,  reduced to o: 

- - n  ~ - m(h)~, ~ ' 7  7.*(h)(u(h) ~,~) n;)[H? ~+~,~ ,~-~,~o~, , , ~  +r 

- -  . ~ v i i k ) ~ ( h ) l ~ s  tU'(h), 

x = x ( ~ ) +  E ( ~ ( ~ >  + v~*(~)g~)) V~(~), ~ = x';~ + # ~ , ;  

L r~ + L'~ra,. 

S u b s t i t u t i n g  ( 3 . 5 )  and  ( 3 . 7 )  i n t o  ( 3 . 1 ) ,  we a r r i v e  a t  t h e  L a g r a n g e  v a r i a t i o n a l  e q u a t i o n  

6 I I = ( H , 6 V + G ~ g y ) ] c +  s  + 2 ~ ( P 6 V  + Z 6 ? ) d a = O ,  ( 3 . 8 )  
c o 

from which, by virtue of the arbitrary nature of the variable vector functions, we can obtain 
equilibrium equations in vectorial form 

~ =  i-. ( 3 . 9 )  F r ~ + F ~ m ,  0, ~ =  i - *  = Z ri @ Z3m, = 0 

and s c a l a r  f o r m  

F ~ = 0 ,  F ~ = 0 ,  Z ~ = 0 ,  Z a = O ,  (3.10) 
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and the natural boundary conditions on the contour of the shell C 

= B , n ,  + R ~ ,  + R ~ , =  0 for 5 V ~ 0 ,  M--~ = M ~ ,  + M ~ , +  

- ~ M m ~ ,  : 0 f o r  ~ 0 ,  E G ~  ) =  0 f o  r ~ ( * h ) ~ m ( * h ) ~ 0  ( 3 . 1 1 )  

and its sharp corners 

Hz=0 for ~P=/=0, GT=0 for 6~=/=0. (3.12) 

The following notation has been introduced into Eqs. (3.8)-(3.12): 

F ~ = V*i ~ --  i~3b *~ + Xi; F 3 = V~l "~3 + Ti~b*,~ -7' X3; 

Z ~ = V * ~  is _ _ l ~ 3 b * ~  - -  ~ ~- L i ;  

Z 3 ~ s 3  , ~ i S b *  ~ _ ~ a  : __ = V,M v- + La; R e l ) -  T~n~ d M ~ / d S ;  

The variational equation (3.8) and the resulting equilibrium equations (3.9), (3.10) and 
boundary conditions (3.11), (3.12) of the theory of three-layered shells with layers of 
variable thickness are, within the framework of the static-kinematic model, the most gen- 
eral and valid for arbitrary displacements. The introduction of some limitations 
on the magnitude of the displacements, the layer thickness, and their variation along ai 
makes it possible to simplify the main relations of the proposed version of the theory of 
three-layered shells and reduce them to the well-known version of the theory. In particular, Eqs. 
(1.8) are valid for parametrization of the outer layers in a study of the average bend [5, 10] of 
thin shells, the components of the displacement vector V(k ) of surface O(k ) can be expressed 
in terms of the components of ~ and ~ of surface o by means of the given formulas [6] 

~ is rr(h) (h) u! k) : ui + h(7,)?i -7 H~h)w --t(h)0)~, w(h) : w + k(~)? -- a n~ ui , 

by v i r t u e  o f  which  ~ h ) ~ o i ( ~ ) : ~ ( ~ ) V ~ P ( ~ ) ) .  For  t h e  g i v e n  c l a s s  o f  t h r e e - l a y e r e d  s h e l l s  t h e  
e q u i l i b r i u m  e q u a t i o n s  ( 3 . 1 0 )  and t h e  b o u n d a ry  c o n d i t i o n s  ( 3 . 1 1 ) ,  ( 3 . 1 2 ) , , a d j u s t e d  t o  t h e  
c o o r d i n a t e  v e c t o r s  o f  t h e  unde fo rmed  b a s i s  on a ,  r e l a t e d  t o  t h e  b a s i s  ( r ~ ,  m,)  by 

-$  - --[ - -  

r i  = ,'i + o ) ~ m ,  m ,  = m - (o~r = m - ( % ' c  - o ) , , n ,  n ,  = n + o~ , ,m ,  

"r, 7r + o).~rn, (on ~ o)in ~ = ~ 0)~ = O)iT , 

can be simplified considerably to a form that agrees with [6] if the moments ~s~ and H in in 
(3.3) and (3.4) are ignored. The sixth moment equilibrium equation Z ~ = 0 is algebraic in 
this case. 

For thin three-layered shells with very thin outer layers (2h/L ~ ~, t(k)/h(k ) ~ s) the 
system of equilibrium equations is simplified even more and can be reduced to a form [5] 
which agrees as to structure of differential operators with the equilibrium equations of the 
Timoshenko type of theory of single-layer shells [i0]. With the specified degree of accu- 
racy the outer layers can be assumed to have no moments the components of the shear strains 
in them are calculated from approximate formulas that follow from (2.11): 

H(~)- ~_ H(.~)H(h)~ 

F u r t h e r  s i m p l i f i c a t i o n s  o f  t h e  main r e l a t i o n s  o f  t h e  t h e o r y  o f  t h r e e - l a y e r e d  s h e l l s  w i t h  
l a y e r s  o f  v a r i a b l e  t h i c k n e s s  i n v o l v e ,  in  p a r t i c u l a r ,  t h e  i n t r o d u c t i o n  o f  c o n d i t i o n s  f o r  t h e  
s l o p e  o f  t h e  s h e l l  [ 1 ] ,  l i m i t a t i o n s  on t h e  v a r i a b i l i t y  o f  t h e  t h i c k n e s s  o f  t h e  o u t e r  l a y e r s  
or filler [4], etc. 

i. 

2. 
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APPLICATION OF THE METHOD OF INFLUENCE FUNCTIONS IN PROBLEMS OF THE 

THEORY OF CRACKS FOR ANISOTROPIC PLATES 

V. N. Maksimenko UDC 539.3:629.7.015.4:624.07 

Application of analytical methods to estimate the strength of composite materials with 
cracks and fine inclusions is difficult due to the lack of information concerning the dis- 
tribution of stresses in a neighborhood of cracktips and inclusions of complex configuration 
in anisotropic materials. A discussion of this problem and a survey of papers in this di- 
rection (mainly for rectilinear cracks and inclusions) can be found, for example, in [I-5]. 

In what follows, based on the method of influence functions, we present a solution of 
fundamental problems of planar elasticity theory for anisotropic bodies weakened by curvi- 
linear cuts. Integral representations are constructed, which make it possible to formulate 
uniformly a solving system of singular integral equations (SIE) for the first, second, and 
mixed problems of elasticity theory. The effectiveness of the integral representations con- 
structed and of the algorithms presented for numerically solving the resulting SIE is demon- 
strated by solving a number of problems of crack theory for anisotropic plates. 

i. We consider an infinite rectilinear-anisotropic plate weakened by a system of smooth 
curvilinear nonintersecting cuts Lj = (aj, bj), j = ~ (Fig. i). We denote the angle be- 

tween Ox and the normal n to the left edge of the cut of point t~L-= U Lj by q(t). We deter- 
j=L 

mine the stress-deformation state (SDS) of such a plate caused by the action of an exterior 
load X+(t) + iY+(t) (t e L) along the edges of the cuts and by specified stresses at in- 
finity. 

Let us assume that the edges of the cuts are not in contact* and the principal vector 
of the external stresses acting on an edge of the cuts is known. We shall also assume we 
are given the complex potentials ~v0(zv), giving a solution of the problem, for a continuous 
plate, of external stresses applied at infinity. 

*In some problems it is necessary to impose a physical condition, excluding the possibility 
of an overlapping of the edges of a cut. Such problems are nonlinear and must be solved 
in an incremental setting, i.e., by stepwise changes of the loading on edges of the cuts. 

Novosibirsk. Translated from Prik!adnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 
128-137, May-June, 1993. Original article submitted June 16, 1992. 
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